A framework for crude oil scheduling in an integrated terminal-refinery system under supply uncertainty

Abstract

Operational decisions for crude oil scheduling activities are determined on a daily basis and have a strong impact on the overall supply chain cost. The challenge is to develop a feasible schedule at a low cost that has a high level of confidence. This paper presents a framework to support decision making in terminal-refinery systems under supply uncertainty. The proposed framework comprises a stochastic optimization model based on mixed-integer linear programming for scheduling a crude oil pipeline connecting a marine terminal to an oil refinery and a method for representing oil supply uncertainty. The scenario generation method aims at generating a minimal number of scenarios while preserving as much as possible of the uncertainty characteristics. The proposed framework was evaluated considering real-world data. The numerical results suggest the efficiency of the framework in providing resilient solutions in terms of feasibility in the face of the inherent uncertainty.

Publication
European Journal of Operational Research
Fabricio Oliveira
Fabricio Oliveira
Associate Professor of Operational Research

Fabricio Oliveira is an Associate Professor of Operational Research in the Department of Mathematics and Systems Analysis.

Related